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This paper considers the linear response of a homogeneous uniformly rotating 
ocean of infinite horizontal extent with a discontinuity in depth to a variable 
horizontal wind stress. It is shown that, for either a transient or time-periodic 
wind stress which is suddenly applied to an initially calm sea surface, the 
asymptotic response far from the forcing region is dominated by an outgoing 
dispersive wave which is trapped along the depth discontinuity, i.e. a double 
Kelvin wave. Plots of the forced wave patterns in the neighbourhood of the depth 
discontinuity itself are also presented. 

1. Introduction 
The trapping of long surface waves by isolated topographical features in the 

ocean has been the subject of several recent investigations (Buchwald 1969; 
Buchwald & Adams 1968; Longuet-Higgins 1967, 1968a, b;  Rhines 1967). The 
purpose of this paper is to report an investigation of the wind generation of one 
such class of waves known as double Kelvin waves or seascarp waves (see 
Longuet-Higgins 1968a). According to Longuet-Higgins, a straight discontinuity 
in depth in a rotating ocean can act as a wave-guide for the propagation of long 
waves along the discontinuity; away from the discontinuity the sea surface 
decays exponentially. On the basis of linearized shallow-water wave theory, it 
can be shown that, for any given wavelength, there is precisely one such permis- 
sible wave motion, and its period always exceeds one pendulum day, i.e. l/f, 
where f is the Coriolis parameter. Further, in a specified hemisphere, double 
Kelvin waves can propagate in only one direction: whenf > 0 ( < 0 )  the shallower 
(deeper) water is to the right of the direction of propagation. 

In  5 2 a partial differential equation for the wind-driven sea surface oscillations 
is derived from the equations of linearized shallow-water theory. In  5 3 transform 
methods are used to formally solve an initial value problem for the response of the 
sea surface to a general space-time distribution of horizontal wind stress. The 
results of $ 3  are then used to obtain the response to two specific wind-stress 
distributions: (i) a transient wind stress which has a step-function spatial 
dependence (0 4) and (ii) a time-periodic wind stress which has an exponential 
spatial behaviour. Also, the stress fields considered in $5  4 and 5 are non-divergent 
and have a component only in the direction normal to the discontinuity in depth. 
In  each example it is shown that the asymptotic sea level response near the depth 
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discontinuity but far from the wind-stress domain is dominated by an outgoing 
double Kelvin wave. In  $6  plots of the wave patterns derived in $04 and 5 are 
presented and discussed in some detail. 

2. Basic equations 
We shall assume that the motions are driven by the horizontal wind stresses 

alone, which in turn can be represented as body forces in the equations of motion. 
It is easily shown that, for normal weather systems over the deep ocean, the 
forcing terms in the equations of motion due to atmospheric pressure fluctuations 
are considerably smaller than those due to the horizontal wind stress. Further, 
we shall assume that the hydrostatic approximation is applicable. Then, for a 
homogeneous uniformly rotating fluid, the linearized non-dissipative equations 
expressing conservation of momentum and mass are given by 

ay* ph,  I 
+I#, -+-  = 0) 

av* 
-+fu*+g- =- 
at* 

a(hu*) av* at* 
ax* ay* at* 

where x*, y* are the Cartesian co-ordinates in the horizontal p m e ,  t* is the time, 
&* is the sea surface distortion, u*, v* are the components of velocity in the 
x*, y* directions, h, is the equilibrium depth, assumed to be a function of x* only, 
f is the Coriolis parameter, g is the acceleration of gravity, p is the density of 
water, rX', ru* are the components of wind stress in the x*, y* directions. 

From (2.1) we have 

where L = f 2  + a2/at*2. From (2.2) and (2.3) it  follows that t* satisfies the equation 

where 

We remark here that, for the particular wind-stress fields discussed in this paper, 
only the second term in F* enters into the analysis (see 444 and 5). For a baro- 
tropic study this term is more important than the horizontal divergence term, 
since the former is independent of the density structure in the ocean. 

In (2 .3 )  and (2.4) we now approximate L by fz since, for typical seascarps, 
double Kelvin waves have periods of several days. The physical implication of 
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this approximation is that inertio-gravity waves do not appear in the analysis. 
Further, following Longuet-Higgins ( 1968 a),  we consider the depth profile 

h, for x* < 0, 

h, for x* > 0, 
h = (  

where, without loss of generality, we assume h, < h,. If we denote the regions 
~t* < 0 and x* > 0 by the subscripts 1 and 2 respectively, (2.4) becomes 

As boundary conditions we require that ET and [z  be bounded far from the dis- 
continuity in depth.? At  x = 0 we require that the surface elevation and normal 
transport be continuous, i.e. 

We now define the non-dimensional variables 

x, y = ko(x*, y*), t = not*, 

T = T*/ ro,  t = [ * / g o ,  

where Eo = rO/pgh,kO and k,', rr,', and ro are respectively the length, time, and 
stress scales which appear in the forcing function F*. Further, we define the 
non-dimensional parameters 

y = h,/h, > 1, 6 = n0/f > 0,  B = f2/gh2ki > 0. (2.7) 

Throughout the analysis it will be assumed, unless otherwise specified, that 
(i) y is not significantly greater than unity and (ii) 6 and B are small compared 
with unity. On employing (2.6) and (2.7) in (2.5), we obtain 

where F = SV, .Tt+(VXT)k.  (2.9) 

The boundary and continuity conditions now take the form 

\[,I, [Ezl < M (a constant) as x+-co,co (2.10) 

and 

t I n  the solution for free double Kelvin waves, the appropriate boundary conditions are 
[:, 6; -t 0 8,s z* -+ - 03, 03 respectively. However, the forced solution contains terms in 
addition to those corresponding to double Kelvin waves, so that these more general 
boundary conditions are imposed. 

27-2 
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3. Sea level response to a horizontal wind stress of general form 
We assume that for t < 0 the sea surface is at its equilibrium level, i.e. 

t j  = 0 for t 6 0 (j= 1,2),  (3.1) 

and that at  t = 0 a wind stress is suddenly applied. With these initial conditions 
now specified, we take Fourier and Laplace transforms of (2.8)-(2.11). Upon 

and assuming that &, a&/ay, and F - to  as 1 y J  +a, equations (2.8) together with 

(d2/dx2 - K2,) El = yF/&, 
(3.1) yield 

(d2/dx2 - K2,) g2 = PI&, (3.3) I 
where K ,  = (kz+ey )a  and K ,  = ( k 2 + e ) i .  

Since K ,  and K ,  are not single valued in the complex variable k, w0 choose the 
Riemann sheet for which K,,  K ,  > 0 when k is real. In the (z, k, s)-space the 
conditions (2.10) and (2.11) become 

and 

where F = Ssd/dx+ik.  The solutions to (3.3) which satisfy (3.4) can be written 

where E l p ,  v, are particular integrals of (3.3) which are bounded in the limit 
x-+-m,co respectively. The unknown coefficients in (3.6), A ,  and A, ,  are 
determined from the continuity conditions (3.5); we find that 

where the functions a, P, and A are given by 

Hence the sea level response is obtained from (3.6), which are now known func- 
tions, by inverting the Fourier and Laplace transforms, viz. 
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In (3.9) it is to be understood that the inversion path in the s plane must be 
indented to the right of any singularities of Ej which lie on the imaginary s axis. 
Also, the inversion path in the k-plane must be suitably indented above or below 
any singularities of Ej which lie on the real k axis; the appropriate indentations 
in this path are to be determined by the familiar Sommerfeld radiation condition. 

4. Response to a transient wind stress 

variables, has the form 
As our first example, we consider a transient wind stress which, in dimensional 

T"* = 70H( t* )H(y*)  exp ( -got*) ,  

7u* = 0) 

where go, T~ > 0 and H ( u )  is the unit step function. This stress field could be 
regarded as a rough approximation to part of the wind field associated with the 
sudden intensification and gradual decay of a large anticyclonic weather system 
centred over the escarpment. In  this case it is clear that we use gcl and ro to 
non-dimensionalize the time and stress. However, since there is no specific 
length scale in (4.1)) we non-dimensionalize x* and y* by k i l  = (gh2)4f-l, which 
implies that E = 1 in this model (see (2.7)). From (2.9) we find that the forcing 
function for this problem reduces to 

P ( Y >  t )  = - H(t)  S(y) exp ( - t ) ,  (4.2) 

where 6(y) is the Dirac delta function. The application of (3.2) to (4.2) yields 
F = l/(s+ 1). Hence the particular integrals of (3.3) are given by 

where, in view of the choice of length scale for this problem, 

K ,  = ( k 2 + y ) i ,  K ,  = ( k 2 +  I)*. (4.4) 

Throughout the remainder of this section, it is to be understood that the functions 
K ,  and K ,  take on the values defined by (4.4). From (3.7), (3.8), and (4.3) we 
find that A ,  = yB( i  - G s ~ / K , ) / K ; ,  

A ,  = B(i + ~ s ~ / K , ) / K $ ,  (4.5) 

where B(k, S) = (7 - 1) IC/&S(S + 1)A. 

Hence, from (3.9) we have 
m 

&(x, y, t )  = ( 1/4n2i ) j  exp ( i k y )  dk! exp (st)  [A ,  exp (K,x) +y/6s(s + 1 )  K;] ds, 

t 2 ( x ,  y, t )  = (1/4nBi)J O0 exp (iky) dk/ exp (st)  [A,  exp ( - K 2 z )  + l/Ss(s + 1)  K;] ds, 

-02 C 

- m  C 
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where A ,  and A ,  are given by (4.5) and C denotes the path from s = -ioo to 
s = ioo indented to the right of s = iw, where 

(4) = (Y - 1) k / W , +  yK2). (4.7) 

In  the s plane, the only singularities of the integrands in (4.6) are the simple 
poles at s = 0, - 1, and iw ;  hence the Laplace inversion is straightforward and 
we do this first. For t > 0 we thus obtain 

g1 = (y/2776)J dkexp (iky) [I -exp (K,~)]/K: 
- w  

+ [y exp ( - t)/2776] dk  exp (iky) s, 
x [k(y - 1) (iK, + 6k) exp (K,x)/DK, - 1]/K2, 

+ (y/277)/ dk exp [i(ky + wt)  + K , ~ I  (K, + K,) /DK~K, ,  (4.8) 
-02 

W 

g2 = ( ~ j z r r ~ ) J  dkexp (iky) [I - exp ( - K,~)I /R;  
-m 

r m  

J - - O O  

For t 6 0, we have cj = 0 ( j  = 1,2).  In (4.8) and (4.9) the function D is defined by 

D(k)  = 6(K,+yK,)+ik(y- 1). 

From (4.8) and (4.9) we note that in each region the response consists of the 
superposition of steady-state, transient, and wave-like terms. Most of the 
integrals which appear in (4.8) and (4.9) cannot be evaluated in terms of known 
functions. Thus, for a complete description of the forced sea level behavjour, 
several numerical integrations would be required. We shall not present any such 
computations at this stage, however; we shall discuss instead the asymptotic 
behaviour of the solution, which in itself is fairly instructive. For y 9 1 and x of 
order unity each contribution to 5, and 5, is exponentially small. This is also true 
for - y 9 1 with the exception of the wave-like integrals which contribute terms 
of order ( - y)-J when both - y 9 1 and t 1. In  each region these dominating 
terms, when combined appropriately, represent a double Kelvin wave progressing 
in the negative y direction; away from the discontinuity the wave amplitude 
decays exponentially. It is important to note that if y = 1, which corresponds to 
an ocean of uniform depth, there is no such trapped wave in the solution (see 
(4.7)). 

We now discuss in some detail the asymptotic sea level behaviour in the 
neighbourhood of the discontinuity itself, where the amplitude of the response 
is a maximum. From (4.8) and (4.9) we have 

‘30, Y, t )  = tl(0 - > y, t )  = 5 2 ( 0  + 9 y, t )  
= ET+CW, (4.10) 
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tT(Y, t ,  = -exp ( -0s exp (iky) g ( k )  dk, 

tW(% t )  = 1 exp [i(kY + 4 4  t)l g ( k )  dk9 

423 

(4.11) 

(4.12) 

W 

where 
- W  

- w  

in which 

In  the k plane, g ( k )  and w(k)  have branch points at  k = f i and k = & iy t .  Since 
the inversion path is along the real axis, we extend the branch cuts out to infinity 

g ( k )  = y(&+ K2)/2nDK,K,. 

FIGURE 1. Diagram showing the location of the branch points, branch lines, 
and pole in the k plane, where k = k,+ik,. 

in the first and fourth quadrants (see figure 1). Further, g(k) has a simple pole at 
k = ip, where D(k) vanishes; for 0 < 8 < 1, p z yhY/(yi - 1) > 0. The asymptotic 
'behaviour of €& for I yI 9 1 can be found fairly easily by Laplace's method (for an 
excellent discussion of this method, see Carrier, Krook & Pearson 1966, chapter 6). 
It follows from (4.11) that, for 0 < S < 1, 

ti - m y )  y+(y* - 11-l exp ( - PY - t )  

+sgn(y)y(y- 1)-1(24Yl)-i 

x Cexp ( - t - lyl) + y-Qexp ( - t - 74 IYI 11 
+O[lyl-8exp(- lYl)1 ( lY l  1). (4.13) 



424 L. A .  Mysak 

The first term in (4.13) represents the contribution due to the pole at k = ip ;  the 
remaining terms arise from integrating around the branch cuts. Before discussing 
the asymptotic behaviour of tW, we first rewrite (4.12) in the form 

(4.14) 

where f(k) = - iCk + p441 ,  (4.15) 

in which /3 = t / y .  We now use the method of steepest descent to determine the 
behaviour of (4.14) for large lyI and t. In  the appendix it is shown that, for 
0 < 6 < 1 and ( y -  l )p  = O(l) , f (k)  as defined by (4.15) has saddle-points only if 
/3 < 0, i.e. only if y < 0. Further, there are precisely two saddle-points when 
y < 0, and these satisfy the equation 

dwldk = - lip > 0. (4.16) 

It follows that the dominant contributions to (4.14) arise from the neighbourhood 
of those k values which satisfy (4.16); the quantity - 1/p, of course, represents 
the group velocity associated with each of these wave-numbers. Thus, for y < 0 
we find (see appendix for details) that 

( - y $  1 and t B l ) ,  (4.17) 
4y4[6(y - 1)  sin Q - ( y  + 1)  cos Q] 

lw - ( -  27ry)h3[(y- 1)&+62(y+ 

(4.18) 

For y > 0, however, tw behaves like 

irV N ys(y&- l)-lexp(-Py-t)+O[y-:exp(-y)l (y 9 1). (4.19) 

From (4.10), (4.13), (4.17) and (4.19) we consequently have that the asymptotic 
sea level response at  the depth discontinuity is given by 

O[y-texp (-!dl (Y $ I) ,  J 
where (i5 = cot-1 [6(y + l)/(y - l)]. 

We note from (4.20) that the asymptotic response is dominated by a dispersive 
wave which propagates away from the region where the wind stress is applied. 
For small changes in t and fixed y < 0, this wave has a period of approximately 
( y  + l)/(y - 1) pendulum days (see (4.18)), which corresponds to the period of a 
free non-divergent double Kelvin wave (see Longuet-Higgins 1 9 6 8 ~ ) .  For plots 
of the function [ ( O ,  y,t) and a further discussion of the solution, the reader is 
referred to $6.  
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5. Response to a time-periodic wind stress 
We now consider the response to a time-periodic wind stress of the form 

425 

where u,, k,, T, > 0. This stress field could be regarded as a rough approximation 
to fluctuating winds caused by alternating anticyclonic and cyclonic weather 
systems. In this example we non-dimensionalize the distance, time and stress by 
k;', g;' and 7, respectively. The forcing function (2 .9 )  which corresponds to (5.1) 

Following the procedure outlined in $3, the response to the forcing function 
(5 .2)  is again easily obtained as a linear combination of Fourier integrals. For the 
sake of brevity, however, we shall not present all the details of the solution since 
it is quite similar in form to the solution given by (4.8) and (4.9). For example, the 
response to (5 .2 )  in the region x > 0 is given by the real part of the following 
expression: 

5 2  = 
m 

dk exp (iky) [ 1 - exp ( - K 2 z ) ]  h/Ki 
m + exp (it)! dk exp ( i k y )  h / ~ g  

-exp (it) dkexp(iky-K,x)hk(y- 1) (K,+Sk) /EK,Ki  

+ y8 dk exp [i(ky + wt)  - K,x] ( K ,  + K z )  h/EK1&, 

-m 

Sr 

h(k)  = k/2nS(k2+ l), 

w ( k )  = - 1 ) / W l +  yK2L 

E(k)  = k ( y -  1 ) - W , + y K z ) ,  

Sr 
where 

and I' denotes the path from k = -m to k = + m  indented above the pole at  
k = q > 0; for small 6 and E ,  q N &(ye)* (74 - 1). With this choice for r, the radia- 
tion condition is automatically satisfied. 

The most significant difference between the two solutions is that large amplifi- 
cation of the sea level response (i.e. resonance) can now occur since P(y,t) is 
periodic in time (see below). The asymptotic response at  the depth discontinuity 



426 L. A .  Mysak 

(5 .5)  

From (5.3) and (5.4) we note that, provided 6 = ao/f 4 (y-  l ) / (y+ l), the 
response is exponentially small except for the double Kelvin wave travelling in 
the negative y direction. As in the previous example, its period is approximately 
given by ( y +  l)/(y- 1) pendulum days; its amplitude, however, falls off like 
(-y)-* (see (5.4) and (5 .5 ) ) .  Finally, in the limit cr0-fa* =f(y- l ) / (y+ l), it is 
easily seen that resonance occurs: for y > 0 the response behaves like t cos ( t )  as 
a0+a*;  for y < 0 on the other hand, only the double Kelvin wave is amplified 
and its amplitude behaves like (ao - a*)-l as a. -+ a*. 

where b = (df, 
n = [ -2(y- 1)/3/6b(y+ 1)2]), 

R = nby+(y-l)t/(y+l)&+&. 

6. Graphs of the response at z = 0 

To gain a deeper understanding of the wave motions associated with the solu- 
tions obtained in § Q  4 and 5, we shall now present a number of figures which depict 
the sea level response c(0, y, t )  at successive instants of time. In  the calculations 
for the wave profiles illustrated below we have set 

y = h,/h, = $ and f = 0.9 x 10-4sec-1. 

These values for the depth ratio and Coriolis parameter are appropriate for the 
Mendocino escarpment off the Californian coast where double Kelvin waves 
might exist. This seascarp, which is centred at  about 40"N latitude, extends 
westward for nearly 3000 km, with the shallower water to the north. According 
t o  the theory, double Kelvin waves should progress westwards, or, in terms of the 
co-ordinate system used in the present analysis, in the negative y direction. How- 
ever, since the seascarp model discussed in this paper is of infinite horizontal 
extent and other important effects such as density stratification and bottom 
friction have been neglected, we must be cautious in applying the above theory 
directly to a region in the ocean such as the Mendocino escarpment. In  view of 
these and other shortcomings (see $ 7 )  in the theory, perhaps the most that should 
be inferred from the numerical results presented below are rough estimates of the 
wave amplitude and period, wavelength and current velocities associated with 
double Kelvin waves in the real ocean. 

Figure 2 shows the asymptotic wave height (4.20) as a function of position at  
successivc instants of time. In  (4.20) we have set S = 0.05 (a, = 0.45 x sec-l); 
hence t ,  - t, = 0.5 corresponds to a dimensional time lapse of about 1.2 days. 
From figure 2 the following properties of the wave motion should be noted: 
(i) for fixed t ,  the wavelength slowly increases with increasing negative y; (ii) as 
t increases, the wavelength slowly decreases; and (iii) as t increases, the amplitude 
slowly decreases. We also note from figure 2 that the asymptotic wave period is 
about six days, which, for the given values of y and f, is roughly the same as the 
period, T ,  of a free non-divergent double Kelvin wave, which is given by 
T = 2n(y+ l)/(r- 1)f. To determine the nature of the response for small t and 
to  check the asymptotic solution defined by (4.20), the function [ ( O ,  y, t )  defined 
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FIGURE 2. Asymptotic behaviour of double Kelvin waves generated by a transient wind 
stress. The function E(0, y, 1 )  defined by (4.20) is plotted as a function of y < 0 with t as 
parameter: (a) t = 20, 20.5, 21 and (b) t = 21.5, 22, 22.5. For each curve shown, 
y = 1.33 and 6 = 0.05. 
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by (4.10)-(4.12) was computed by standard numerical integration methods. 
Sinceg(k) (see (4.11) and(4.12))fallsoff like l/k2as k+co, therangeofintegration 
used in the computations was Ikl 6 30; it was found that this truncation intro- 
duced an error of less than 0.1 yo. From figures 3 (a )  and 3 ( b )  we note that, shortly 

Wave height 

i5 

J -2 

FIGURE 3. Sea level response (wave height) due to a transient wind stress. The function 
[(O, y, t )  defined by (4.10) is plotted as a function of y with t as parameter: (a )  1 = 0, 
0.25, 0.5, 1, 2, 3; ( b )  t = 4, 5, 6, 7 ;  ( c )  t = 8, 10, 15; (d )  t = 20, 21; ( e )  t = 25, 50. For 
each curve shown, y = 1.33 and 6 = 0.05. Dashed lines in (c), (d), and ( e ) :  the asymptotic 
response defined by (4.20) for t = 15, 20, 21 and 25. 

after the wind stress is applied, a single wave of fairly large amplitude is generated 
in the neighbourhood of y = 0; as t increases, this wave progresses in the negative 
y direction, away from the wind stress domain (y > 0). For t > 3, after which 
time the wind stress and transient parts of the solution defined by (4.11) are both 
very small, several more progressive waves are successively generated near the 
origin; these ‘secondary waves’, however, are characterized by a much smaller 
amplitude and shorter wavelength than those associated with the ‘initial wave ’. 
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It is instructive to note that the three properties of the response which were 
inferred from the asymptotic solution are confirmed by the numerical solution 
for large t (see figures 3(c)-(e)). The agreement between the asymptotic and 
numerical solutions for - 10 < y < - 5 and t 1 is fairly good only for t = 20 and 
21, however, for which cases - ( y  - 1)p 21 1. This is not surprising in view of the 
fact that this condition was used in the derivation of (4.20). 

I' 

'-1 
Fig. 3 (c-e). For legend see facing page. 

Figure 4 shows the asymptotic wave height defined by (5.4) at successive 
instants of time. In  this case we have set 6 = 0.1 and E = 0.1, which implies that 
go = 0.9 x 10-5sec-1 (i.e. aforcing period of about Sdays) andk, = 1.3 x 10-8cm-l. 
In  contrast to the asymptotic response due to a transient wind stress, we note 
that for fixed t 1 the wave height slowly decays with negative y. The wave- 
length dependence on y and t ,  however, is similar to that shown in figure 2. 
Finally, we note that the asymptotic wave period is again about 6 days. 

We conclude this section by giving estimates of the amplitude, wavelength and 
current velocities associated with the waves generated by each of the wind-stress 
models. For the transient wind-stress case, we find that, for 70 = 3 dynes ern-,, 
k, = f(gh,)-3 = 0.4 x 10-8cm-l (corresponding to f = 0.9 x 10-4sec-1, g = lo3 cm 
sec-2, and h, = 5 x lO5cm), 6, = 70(pgh,lc,)-1 N 1.5 cm. Hence the initial wave 
has an amplitude of about 10 cm and a wavelength of about lo9 cm; also, from 
(2.3) it follows that the associated current velocities are about 1 cmsec-l. The 
secondary waves, on the other hand, are characterized by an amplitude of 
about 2 cm, a wavelength of about 5 x lo8 cm, and current velocities of about 
0-2 cm sec-1. For the time-periodic wind stress case, we find that go 2: 0.5 cm. 
Hence in this case the waves are characterized by an amplitude of about 2 cm, a 
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wavelength of about lo9 cm, and current velocities of about I cm see-I. In parti- 
cular we note that the characteristic wavelengths given above are somewhat 
longer than the total horizontal extent of the Mendocino escarpment (3  x 108 om). 
It is thus evident that a seascarp model of infinite horizontal extent is not very 
realistic as far as the real ocean is concerned. Possible modifications of the theory 
in this connexion are discussed in 3 7. 

-Y 

FIGURE 4. Asymptotic behaviour of double Kelvin waves generated by a time-periodic 
wind stress. The function E(0, y, t )  defined by (5.4) is plotted as a function of y < 0 
with t as parameter: (a) t = 10, 11, ..., 15 and ( b )  t = 25, 26, ..., 30. For each curve 
shown, y = 1.33, 6 = 0-1, and E = 0.1. 
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7. Concluding remarks 
We have shown that a transient or time-periodic wind stress which is suddenly 

applied to an unbounded ocean with a discontinuous depth profile of infinite 
horizontal extent can generate double Kelvin waves which travel away from the 
forcing region. The stress fields considered in this paper, however, are rather 
specialized; in each example the stress vector is nondivergent and has a com- 
ponent only in the direction normal to the discontinuity in depth. Also, we have 
not discussed here the interesting case of the response to a stress field which 
represents a travelling disturbance. 

Further, the discontinuous depth profile considered in this paper is a rather 
crude approximation to a seascarp in the real ocean. Longuet-Higgins (19683) 
has recently investigated the properties of free waves which are trapped along a 
seascarp with a continuous and monotonic depth profile which is asymptotic to 
the uniform depths h, and h,. For this smooth depth profile he has shown that 
(i) an infinite set of trapped progressive waves can exist and (ii), as the width of 
the transition region tends to zero, the lowest-mode wave reduces to a double 
Kelvin wave while the higher-mode waves degenerate into steady currents. It 
would be interesting to determine whether this complete spectrum of waves could 
be excited by wind stress fields of the form considered in this paper, a.nd, if so, 
whether the response near the escarpment is dominated by the lowest-mode wave. 

As noted in the previous section, a seascarp of infinite horizontal extent may 
also be a rather poor approximation to a seascarp in the real ocean. An alternative 
and also very interesting model that could be considered for the depth profile is 
the following: h, for x < 0 and y > 0 t h, ( > h,) for all other x and y, 

h(x) = 

where y is measured positive in the eastward direction. For this geometry and 
a, constant f plane, a double Kelvin wave travelling in the negative y direction 
could not exist in the region y < 0 but would propagate around the corner at 
x = y = 0. On the other hand, if a p plane was used along with the above geo- 
metry, some of the energy associated with a westward-travelling double Kelvin 
wave would be transferred (at x = 0) to a westward-travelling Rossby wave, 
which, it is well known, could exist in the region y < 0 (a region of uniform depth). 

Finally, it would be interesting to determine the effects of stratification on the 
purely barotropic motions discussed here. It is not inconceivable that a significant 
amount of long-period energy would also be propagated by internal waves. The 
answer to this question is particularly important if a study to detect double 
Kelvin waves from deep-sea buoy measurements is undertaken. 
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this investigation and for stimulating discussions. I should also like to thank 
Mr D.E.Kissel1 for his assistance with the numerical computations and the 
preparation of the figures. Finally, the support of the National Science Founda- 
tion through NSF Grant GA-1452 is gratefully acknowledged. 
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Appendix 
Before applying the method of steepest descent to (4.14), it  is first convenient 

k = -  iyg sin 8, (A 1) 
to make the substitution 

where k = k ,+ ik ,  and 8 = 6’,+i8,. The transformation (A 1) maps the cut 
k plane, illustrated in figure 1, onto the strip l8,l < &r, illustrated in figure 5. 
Prom (A l), (4.14) and (4.15) we obtain 

where 

exp [ - yP(8)l G(8) do, 

( y -  1)psinB 
S( cos 8 + a( 8 ) )  ’ q e )  = - y4 sin 8 - ~- 

- i yqy  cos 8 +a(@)) q e )  = 
2 ~ 4 8 )  [S(cos 8 +a(@) + (y - 1) sin 81’ 

in which a(8) = (~-~2sin28)*.  (A 3) 

P(8) and G(8) have branchpoints at  8 = & 8, E & sin-l ( y t ) ,  which are the images 
of the branch points a t  k = i ;  G(8) has a simple pole at - 8 N 6(y* - 1)-l = OD, 
which is the image of the pole at k = ip. The appropriate branch lines in the 
8 plane are shown in figure 5. 

The saddle-points of P(8) are given by P’(8) = 0, or, equivalently, by the roots 
of the equation 

673 cos ~ [ ~ ( c o s ,  8 + a,) + 2a2 COB 81 + (y  - 1)P(? cos 8 +a) = 0. (A 4) 

For 0 < 6 < 1 and (y -  1)p = O(l), it is obvious that (A 4) has no real roots. 
However, if 6’ = i8, and cosh 8, and sinh 8, are significantly greater than unity, 
then, providedB < 0, (A 4) has a root a t  8 = iso, say, where so > 0. Upon approxi- 
mating a(&,) by y sinh so (see (A 3))T and also cosh so and sinh so by exp (s0)/2, it is 
easily shown that 

Since (A 4) is an even function of 8, it follows that P(8) also has a saddle-point 
at 8 = -iso. 

The path of steepest descent through 8 = iso, which we denote by C,, satisfies 
the equation 

Im[P(B)] = Im[P(is,)] 

= -y+m-P(y- l)/(r+ l)S, (A 5) 

where m = [ - 2p(y - l)/Syt(y + 1)2]9, 

Im [P(8)] = - y* cos 0, sinh 8, 

1 sinh 8, cosh 0, + p( cos a cos 8, sinh 8, - sin a sin 8, cosh 0,) 
- ’w) [ p2 + Zpfcos a cos O1 cosh 8, - sin a sin 8, sinh 02) + cos2 8, + sinh2 8, ’ 

The consequence of this approximation is that the asymptotic wave motion is, in 
a certain sense, non-divergent (see discussion following (4.20)). 
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in which a and p are given by 

- y2 sin 28, sinh 28, 
tan2a = (la1 < i 4 9  27 + Y ~ ( C O S  28, cash 20, - 1) 

p = 2-@y + yZ(cos 20, cosh 28, - 1)12 + 7 4  sin2 28, sinh2 28#. 

Since F"(is,) 2: iy*m, it follows that C+ makes an angle of 37-r with the imaginary 
axis. Also, it can be shown from (A 5) that C+ does not cross the real axis but again 
crosses the imaginary axis at  6 = iOC, where 8, > 0 and 0; < 1; at 8 = i6,, C, 
makes an angle of i7-r with the imaginary axis. Finally, it can be shown that, as 

82 

( 
Branch iB, 

lines - 

FIGURE 5. Diagram of the 6 plane, where 6 = 8, + i6,. The curves C+ and C- are the paths 
of stccpest descent through the saddle-points 0 = is, and 8 = -is, respectively. 
28 Fluid Mech. 37 
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8, --f co, C, has the line 8, = $n as the asymptote. The path through 8 = -is,, 
which we denote by C-, satisfies the equation 

Im [F(6)] N y h  +P(y - l)/(y + 1) S. 

It is fairly easy to show that C- is merely the reflexion of C+ across the real axis. 
The paths C+ and C- are illustrated in figure 5. 

Now, by Cauchy's theorem and Jordan's lemma, it follows from (A 2 )  that 

where C, and C+ are the paths shown in figure 5. The contributions from the 
integrals along C, and C+ are of order ( - y)-* exp (y) and for - y 9 1 are very 
small in comparison with the contributions along C+ and C- in the neighbourhood 
of the saddle-points. We thus find that, for - y 9 1 and t 9 1, the leading terms of 
the asymptotic representation of &, are given by 

Upon making the appropriate substitutions, (A 6) reduces to (4.17). 
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